60 research outputs found

    Neuronal Variability during Handwriting: Lognormal Distribution

    Get PDF
    We examined time-dependent statistical properties of electromyographic (EMG) signals recorded from intrinsic hand muscles during handwriting. Our analysis showed that trial-to-trial neuronal variability of EMG signals is well described by the lognormal distribution clearly distinguished from the Gaussian (normal) distribution. This finding indicates that EMG formation cannot be described by a conventional model where the signal is normally distributed because it is composed by summation of many random sources. We found that the variability of temporal parameters of handwriting - handwriting duration and response time - is also well described by a lognormal distribution. Although, the exact mechanism of lognormal statistics remains an open question, the results obtained should significantly impact experimental research, theoretical modeling and bioengineering applications of motor networks. In particular, our results suggest that accounting for lognormal distribution of EMGs can improve biomimetic systems that strive to reproduce EMG signals in artificial actuators

    Dissociating Variability and Effort as Determinants of Coordination

    Get PDF
    When coordinating movements, the nervous system often has to decide how to distribute work across a number of redundant effectors. Here, we show that humans solve this problem by trying to minimize both the variability of motor output and the effort involved. In previous studies that investigated the temporal shape of movements, these two selective pressures, despite having very different theoretical implications, could not be distinguished; because noise in the motor system increases with the motor commands, minimization of effort or variability leads to very similar predictions. When multiple effectors with different noise and effort characteristics have to be combined, however, these two cost terms can be dissociated. Here, we measure the importance of variability and effort in coordination by studying how humans share force production between two fingers. To capture variability, we identified the coefficient of variation of the index and little fingers. For effort, we used the sum of squared forces and the sum of squared forces normalized by the maximum strength of each effector. These terms were then used to predict the optimal force distribution for a task in which participants had to produce a target total force of 4–16 N, by pressing onto two isometric transducers using different combinations of fingers. By comparing the predicted distribution across fingers to the actual distribution chosen by participants, we were able to estimate the relative importance of variability and effort of 1∢7, with the unnormalized effort being most important. Our results indicate that the nervous system uses multi-effector redundancy to minimize both the variability of the produced output and effort, although effort costs clearly outweighed variability costs

    Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed

    Get PDF
    The motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages. Part 1 places the motor theory of speech perception in a larger framework based on our earlier models of the adaptive formation of mirror neurons for grasping, and for viewing extensions of that mirror system as part of a larger system for neuro-linguistic processing, augmented by the present consideration of recognizing speech in a novel accent. Part 2 then offers a novel computational model of how a listener comes to understand the speech of someone speaking the listener's native language with a foreign accent. The core tenet of the model is that the listener uses hypotheses about the word the speaker is currently uttering to update probabilities linking the sound produced by the speaker to phonemes in the native language repertoire of the listener. This, on average, improves the recognition of later words. This model is neutral regarding the nature of the representations it uses (motor vs. auditory). It serve as a reference point for the discussion in Part 3, which proposes a dual-stream neuro-linguistic architecture to revisits claims for and against the motor theory of speech perception and the relevance of mirror neurons, and extracts some implications for the reframing of the motor theory

    Modeling the Development of Goal-Specificity in Mirror Neurons

    Get PDF
    Neurophysiological studies have shown that parietal mirror neurons encode not only actions but also the goal of these actions. Although some mirror neurons will fire whenever a certain action is perceived (goal-independently), most will only fire if the motion is perceived as part of an action with a specific goal. This result is important for the action-understanding hypothesis as it provides a potential neurological basis for such a cognitive ability. It is also relevant for the design of artificial cognitive systems, in particular robotic systems that rely on computational models of the mirror system in their interaction with other agents. Yet, to date, no computational model has explicitly addressed the mechanisms that give rise to both goal-specific and goal-independent parietal mirror neurons. In the present paper, we present a computational model based on a self-organizing map, which receives artificial inputs representing information about both the observed or executed actions and the context in which they were executed. We show that the map develops a biologically plausible organization in which goal-specific mirror neurons emerge. We further show that the fundamental cause for both the appearance and the number of goal-specific neurons can be found in geometric relationships between the different inputs to the map. The results are important to the action-understanding hypothesis as they provide a mechanism for the emergence of goal-specific parietal mirror neurons and lead to a number of predictions: (1) Learning of new goals may mostly reassign existing goal-specific neurons rather than recruit new ones; (2) input differences between executed and observed actions can explain observed corresponding differences in the number of goal-specific neurons; and (3) the percentage of goal-specific neurons may differ between motion primitives

    Do schools differ in suicide risk? the influence of school and neighbourhood on attempted suicide, suicidal ideation and self-harm among secondary school pupils

    Get PDF
    <br>Background: Rates of suicide and poor mental health are high in environments (neighbourhoods and institutions) where individuals have only weak social ties, feel socially disconnected and experience anomie - a mismatch between individual and community norms and values. Young people spend much of their time within the school environment, but the influence of school context (school connectedness, ethos and contextual factors such as school size or denomination) on suicide-risk is understudied. Our aim is to explore if school context is associated with rates of attempted suicide and suicide-risk at age 15 and self-harm at age 19, adjusting for confounders.</br> <br>Methods: A longitudinal school-based survey of 1698 young people surveyed when aged 11, (primary school), 15 (secondary school) and in early adulthood (age 19). Participants provided data about attempted suicide and suicide-risk at age 15 and deliberate self-harm at 19. In addition, data were collected about mental health at age 11, social background (gender, religion, etc.), and at age 15, perception of local area (e.g. neighbourhood cohesion, safety/civility and facilities), school connectedness (school engagement, involvement, etc.) and school context (size, denomination, etc.). A dummy variable was created indicating a religious 'mismatch', where pupils held a different faith from their school denomination. Data were analysed using multilevel logistic regression.</br> <br>Results: After adjustment for confounders, pupils attempted suicide, suicide-risk and self-harm were all more likely among pupils with low school engagement (15-18% increase in odds for each SD change in engagement). While holding Catholic religious beliefs was protective, attending a Catholic school was a risk factor for suicidal behaviours. This pattern was explained by religious 'mismatch': pupils of a different religion from their school were approximately 2-4 times more likely to attempt suicide, be a suicide-risk or self-harm.</br> <br>Conclusions: With several caveats, we found support for the importance of school context for suicidality and self-harm. School policies promoting school connectedness are uncontroversial. Devising a policy to reduce risks to pupils holding a different faith from that of their school may be more problematic.</br&gt

    The Grasping Side of Odours

    Get PDF
    Background: Research on multisensory integration during natural tasks such as reach-to-grasp is still in its infancy. Crossmodal links between vision, proprioception and audition have been identified, but how olfaction contributes to plan and control reach-to-grasp movements has not been decisively shown. We used kinematics to explicitly test the influence of olfactory stimuli on reach-to-grasp movements. Methodology/Principal Findings: Subjects were requested to reach towards and grasp a small or a large visual target (i.e., precision grip, involving the opposition of index finger and thumb for a small size target and a power grip, involving the flexion of all digits around the object for a large target) in the absence or in the presence of an odour evoking either a small or a large object that if grasped would require a precision grip and a whole hand grasp, respectively. When the type of grasp evoked by the odour did not coincide with that for the visual target, interference effects were evident on the kinematics of hand shaping and the level of synergies amongst fingers decreased. When the visual target and the object evoked by the odour required the same type of grasp, facilitation emerged and the intrinsic relations amongst individual fingers were maintained. Conclusions/Significance: This study demonstrates that olfactory information contains highly detailed information able to elicit the planning for a reach-to-grasp movement suited to interact with the evoked object. The findings offer a substantia

    Understanding the influence of race/Ethnicity, gender, and class on inequalities in academic and non-academic outcomes among eighth-grade students: findings from an intersectionality approach

    Get PDF
    Socioeconomic, racial/ethnic, and gender inequalities in academic achievement have been widely reported in the US, but how these three axes of inequality intersect to determine academic and non-academic outcomes among school-aged children is not well understood. Using data from the US Early Childhood Longitudinal Studyβ€”Kindergarten (ECLS-K; N = 10,115), we apply an intersectionality approach to examine inequalities across eighth-grade outcomes at the intersection of six racial/ethnic and gender groups (Latino girls and boys, Black girls and boys, and White girls and boys) and four classes of socioeconomic advantage/disadvantage. Results of mixture models show large inequalities in socioemotional outcomes (internalizing behavior, locus of control, and self-concept) across classes of advantage/disadvantage. Within classes of advantage/disadvantage, racial/ethnic and gender inequalities are predominantly found in the most advantaged class, where Black boys and girls, and Latina girls, underperform White boys in academic assessments, but not in socioemotional outcomes. In these latter outcomes, Black boys and girls perform better than White boys. Latino boys show small differences as compared to White boys, mainly in science assessments. The contrasting outcomes between racial/ethnic and gender minorities in self-assessment and socioemotional outcomes, as compared to standardized assessments, highlight the detrimental effect that intersecting racial/ethnic and gender discrimination have in patterning academic outcomes that predict success in adult life. Interventions to eliminate achievement gaps cannot fully succeed as long as social stratification caused by gender and racial discrimination is not addressed

    Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts

    Get PDF
    Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (nβ€Š=β€Š3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (β‰ˆ2Γ—) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary tasks may also be used in automatic brainstem-mediated pathways for balance
    • …
    corecore